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Abstract

We develop a new computational model of the linear fluid–structure interaction of a cantilevered flexible plate with

an ideal flow in a channel. The system equation is solved via numerical simulations that capture transients and allow the

spatial variation of the flow–structure interaction on the plate to be studied in detail. Alternatively, but neglecting wake

effects, we are able to extract directly the system eigenvalues to make global predictions of the system behaviour in the

infinite-time limit. We use these complementary approaches to conduct a detailed study of the fluid–structure system.

When the channel walls are effectively absent, predictions of the critical velocity show good agreement with those of

other published work. We elucidate the single-mode flutter mechanism that dominates the response of short plates and

show that the principal region of irreversible energy transfer from fluid to structure occurs over the middle portion of

the plate. A different mechanism, modal-coalescence flutter, is shown to cause the destabilisation of long plates with its

energy transfer occurring closer to the trailing edge of the plate. This mechanism is shown to allow a continuous change

to higher-order modes of instability as the plate length is increased. We then show how the system response is modified

by the inclusion of channel walls placed symmetrically above and below the flexible plate, the effect of unsteady

vorticity shed at the trailing edge of the plate, and the effect of a rigid surface placed upstream of the flexible plate.

Finally, we apply the modelling techniques in a brief study of upper-airway dynamics wherein soft-palate flutter is

considered to be the source of snoring noises. In doing so, we show how a time-varying mean flow influences the type of

instability observed as flow speed is increased and demonstrate how localised stiffening can be used to control instability

of the flexible plate.
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1. Introduction

The fluttering of a flag is perhaps the most ubiquitously observed interaction between a solid and fluid and yet this

deceptively simple physical system still defies a complete understanding of its dynamics. A formal representation of the
e front matter Crown Copyright r 2009 Published by Elsevier Ltd. All rights reserved.

uidstructs.2008.12.004

ry version of this paper was presented in the 7th FSI, AE & FIV+N Symposium, within the 2006 ASME PVP

ancouver, BC, Canada.

ing author.

ess: A.Lucey@Curtin.edu.au (A.D. Lucey).

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2008.12.004
mailto:A.Lucey@Curtin.edu.au


ARTICLE IN PRESS
R.M. Howell et al. / Journal of Fluids and Structures 25 (2009) 544–566 545
canonical fluid–structure system, of which the flag-flutter configuration is one example, is that of a mean flow

interacting with a cantilevered flexible surface embedded in the flow and aligned with its direction. This system differs

from the flag-flutter example in that the structural forces are dominated by a flexure term whereas for the flag problem

this role is played by the tension induced by large-amplitude motions. The phenomena studied herein may be envisaged

as vibrations of a fluid-loaded plate for which small-amplitude motions and linear instability are the precursors of

sustained flow-induced finite-amplitude oscillations. While this system might seem distant from any useful application,

the elucidation of the rich dynamics at work in the model problem is fundamental to our understanding of many real-

world problems in fluid–structure interaction. In this paper we develop a new and versatile model of the system and

then conduct an investigation of its stability to linear perturbations from an undisturbed mean state. We also apply our

findings to a particular biomechanical system that comprises the motion of the soft palate in the human upper airway.

Our particular focus is on the characterisation of energy exchanges between flow and solid within the system. We are

then able to show how these sum to the overall, or global, amplification or decay of flexible-plate oscillations that is

observed as a system response. We remain aware that the present linear study cannot address the well-known sub-

critical instability present in such systems. However, the numerical approach that we describe herein can readily be

extended to model non-linear motions of the flexible plate.

The pioneering work of Kornecki et al. (1976) on the problem at hand has, over the past decade or so, stimulated the

major thrust in research effort that it deserved. Broadly the modelling of such studies divides into one of two types; the

flexible plate either resides in an infinite domain of fluid — for examples, see Huang (1995), Yamaguchi et al. (2000a),

Watanabe et al. (2002b), Argentina and Mahadevan (2005), Tang and Paı̈doussis (2006) and Eloy et al. (2007) — or it is

embedded in plane-channel flow — for examples, see Aurégan and Depollier (1995), Guo and Paı̈doussis (2000), Balint
and Lucey (2005) and Tetlow and Lucey (2009). Clearly, the unbounded-fluid case can be regarded as the limit of

infinite channel height for a centrally located flexible plate. All of these models predict that beyond a threshold, or

critical, applied flow speed the flexible plate loses its stability to small-amplitude disturbances through a flutter

mechanism. The critical mode for short plates typically comprises a combination of the fundamental and second in

vacuo eigenmodes of the cantilevered flexible plate. Increasing the plate length reduces the critical speed and raises the

order of the in vacuo eigenmodes that dominate the composition of the critical mode. For a short plate the flutter

mechanism can be attributed to the strong effect of its finiteness that creates a phase shift between the motion of the

plate and the forcing fluid pressure. This results in energy transfer between fluid and plate at all flow speeds. Instability

sets in when the net transfer is from fluid to plate; this will be demonstrated in the present paper. In contrast, an

infinitely long flexible plate, subject to potential flow, experiences a pressure signal that is exactly orthogonal to the

plate’s motion at all pre-instability flow speeds and therefore does not admit irreversible energy transfer; for example,

see Carpenter and Garrad (1985), Crighton and Oswell (1991) and the discussion of Lucey and Carpenter (1993a) for

the closely related problem of single-sided flow over an infinitely long flexible panel. The dynamic instability to which

long flexible plates succumb is a Kelvin–Helmholtz type of flutter. At a sufficiently high level of fluid loading two modes

coalesce to give a complex-conjugate pair of wave solutions, one of which is highly amplified and the other

commensurately damped. At the onset of this type of flutter, it is the modal-coalescence that creates the phase shift

between the pressure signal and wall motion which allows the physical transfer of energy from the fluid to the plate.

Long cantilevered flexible plates, which are semi-infinite in the limit of streamwise extent, therefore exhibit elements of

both types of the aforementioned flutter mechanisms.

The fundamental relationship between local and global instability of fluid–structure systems has been systematically

addressed by Doaré and de Langre (2006) building upon Doaré and de Langre (2002) in which the instability of a fluid-

conveying pipe was studied. They show when and how local waves, those predicted by a dispersion equation valid for

an infinitely long domain, can combine through a process of propagation and reflection in a finite system to yield a

global instability. In the present paper, we extract eigenmodes to make predications of global behaviour. However, our

numerical simulations effectively model local behaviour and wave reflections through the enforcement of the boundary

conditions at each end of the flexible plate. We base the descriptors ‘short’ and ‘long’ for the finite system on the value

of nondimensional plate length, L̄ ¼ rf L=ðrhÞ, where L is its dimensional length, rf is the fluid density and ðrhÞ is the

mass per unit area of the plate. However, within Doaré and de Langre’s framework of ‘from waves to modes’, the entire

range of L̄ studied herein would be considered ‘short’ in that the disturbance wavelengths are of the same order as the

length of the flexible plate. Thus, in this paper, the investigation of spatial dependence within a global response can be at

sub-wavelength scales.

The present study models ideal flow but can incorporate the effect of channel walls. The explicit omission of viscous

effects may seem an extreme assumption. However, the use of unsteady laminar flow in Balint and Lucey (2005)

revealed that the flutter instability of a short flexible plate was qualitatively very similar to that predicted using ideal

flow. The flow solution used by Balint and Lucey (2005) is restricted to flows at low Reynolds number, whereas an ideal-

flow model can be considered as a model for flows at very high, indeed infinite, Reynolds number. Like the majority of
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previous studies we assume a two-dimensional flow–structure system that has infinite span. The elegant analysis of Eloy

et al. (2007) quantified the effect of finite span on plane waves with fronts perpendicular to the flow direction; what

results is a correction factor on the pressure field yielded by a two-dimensional analysis. Thus, we can infer that the

dynamics predicted by two-dimensional models will have, at the very least, qualitative validity. The system studied

herein is closest to the plane-channel configuration investigated in Guo and Paı̈doussis (2000). We extend their work by

modelling the effects of: (a) a central rigid surface at the leading edge of the flexible plate; (b) the singularity present at

the leading edge of the flexible plate; (c) spatially varying stiffness in the flexible plate; (d) the wake shed by the motion

of the flexible plate; and (e) an unsteady mean flow. We also compare our findings with those from the corresponding

unbounded-flow study of Tang and Paı̈doussis (2006, 2007) who have investigated the foregoing points (b) and (d).

The most significant difference between the present study and those that have preceded it lies in our development and

use of a computational model that permits us to conduct numerical simulations of the flow–structure system. This

means that we make no presupposition about disturbance form; by contrast, modal studies require that the fluid-loaded

deformation of the flexible plate can be constructed accurately from a finite number of pre-selected in vacuo plate

modes. Our approach also permits us to model transient behaviour that exists prior to a system eigenstate being reached

or that results from the use of a time-varying mean flow. We are also able to identify spatially localised dynamics within

the system. These are lost in the aggregating process of Galerkin, or modal, methods that only generate global

predictions of behaviour and stability.

The geometry modelled is shown in Fig. 1. Ideal flow is assumed and the perturbed flow field modelled using a

linearised boundary-element method (BEM) that then yields the perturbation pressure acting on the plate through the

linearised unsteady Bernoulli equation. The motion of the flexible plate is modelled using linearised one-dimensional

beam theory. The unsteady shed vorticity is modelled using a linearised discrete-vortex method. In the BEM, vortex

singularities are used to model the central surface as they capture the discontinuity in tangential velocity across this

surface. Although Tang and Paı̈doussis (2007) recently used a lumped-vortex method, ours is the first time that a

continuous vortex distribution has been used for a fully coupled flow–structure interaction for arbitrarily deforming

lifting surfaces. The assembled system is then used to conduct a variety of numerical simulations, the results of which

map out the response space of the system. However, we also use the computational model to extract directly the

eigenmodes of the fluid–structure system using the state-space methods developed by Pitman and Lucey (2009). An

equivalent approach was adopted by Argentina and Mahadevan (2005), although they made simplifying assumptions in

their flow model in order to develop a tractable system equation. Our computational model allows the full description

of fluid loading to be included. Moreover, the accuracy of our system-stability results is ensured because we include all

M fluid–structure eigenmodes, where M is the number of collocation points on the plate. Increasing M decreases the

error at a monotonically reducing rate as the solution converges to being exact at the limit M ¼ 1.

The paper is laid out as follows. Initially the construction of the numerical model is described and diagnostic

variables are introduced. Results from our numerical simulations are then presented that analyse the flutter instabilities

observed at low and high mass ratios. Predicted critical-velocity values obtained via our numerical simulations and

from other published work are then compared. Further results are then presented that demonstrate the effects on the

flutter instability of shed vorticity, a central rigid surface at the leading edge of the flexible plate, channel walls, an

unsteady mean flow and distributed stiffness in the flexible plate. The mechanism of all flutter instabilities observed is
Fig. 1. Schematic of the fluid–structure system studied.
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explained in terms of the transfer of fluid energy to the plate via the interaction of the fluid pressure and the plate

velocity.
2. Theoretical and computational modelling

The mechanics of the disturbed, linear flow–structure system may be represented by an equation of motion of the

form

½L�Z ¼ �dpð€Z; _Z; ZÞ, (1)

subject to initial values and plate-edge conditions. ½L� is a differential operator on the vertical plate displacement, Z; dp

is the pressure perturbation due to disturbances to the free-stream flow, U1, and is composed of hydrodynamic

stiffness, damping and inertia. Co-ordinate axes are as shown in Fig. 1, and Fig. 2 shows how the surfaces of the

structure are discretised into a set of boundary-elements or panels, where Mw, Mcs and M are the number of panels on

the channel walls, rigid central-surface and the flexible plate, respectively. At the centre of each panel is a control point

where properties relating to the fluid pressure calculated for each panel are assumed to be located. In contrast, the

flexible plate is discretised into a set of Nð¼M � 1Þ mass points where the mechanical properties of the plate will be

assumed centred; these are defined by the panel end points as shown in Fig. 2. Below, we describe the separate plate and

flow models and how they are coupled into the final computational model.

2.1. Plate mechanics

The specific spatially discretised form of Eq. (1) for a thin flexible plate is

rh€Zn þ d _Zn þ Br4Zn ¼ �dpn, (2)

where n is the mass-point number along the flexible plate. r, h, d and B are, respectively, the density, thickness, damping

coefficient and flexural rigidity of the plate. The flexural rigidity is related to the elastic modulus, E, and the Poisson

ratio, n, through

B ¼ Eh3=12ð1� n2Þ. (3)
Fig. 2. Fluid–structure system: diagrammatic representation of the computational methods used and the system discretisation.
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The flexure term r4Zn is the fourth-order spatial derivative of Zn and can be written in (central) finite-difference form as

r4Zn ¼
6

dx4
Zn �

4

dx4
ðZn�1 þ Znþ1Þ þ

1

dx4
ðZn�2 þ Znþ2Þ, (4)

where dx is the panel length; for the uniform discretisation used in this paper, dx ¼ L=M where L is the length of the

flexible plate. Eq. (2) can be rewritten in matrix form as

rh½I�f€Zg þ d½I�f_Zg þ B½D4�fZg ¼ �fdpg, (5)

where ½I� is the identity matrix and ½D4� is a pentadiagonal matrix containing the terms generated by Eq. (4).

Cantilevered-free edge conditions are enforced on the plate by imposing zero displacement and gradient at the

cantilevered end (the leading edge) and zero bending moment and shear force at the free end (the trailing edge); these

conditions are implicit in the construction of ½D4� via their application at the dummy nodes labelled N ¼ �2;�1;N þ 1

and N þ 2 illustrated in Fig. 2. Our numerical model of a cantilevered-free plate has been validated by comparing

angular frequencies of oscillation of the first six in vacuo eigenmodes, as predicted by theory and our computational

model; the results of this validation are similar to those presented in Balint and Lucey (2005).

2.2. Fluid mechanics

To calculate the magnitude of the pressure acting on the structural surfaces that is generated by the deflection of the

plate, a linearised BEM of flow solution is employed. To apply the BEM, a surface is discretised into a finite number of

panels; at the centre of these panels is the panel control point. Singularities are distributed along these panels; by

determining the strengths of these singularities the pressure at the individual control points can then be calculated. This

approach to the fluid-structure interaction of an arbitrarily deforming flexible surface is described in Lucey and

Carpenter (1992). The discretisation and singularity distributions utilised in our methodology are illustrated in Fig. 2.

We use vortex singularities to model the central surface as they capture the discontinuity in tangential velocity across

this lifting surface. In contrast, source/sink singularities are used to model the channel walls as these are non-lifting

surfaces. The linearisation of the BEM is also illustrated in this figure: the BEM panels remain fixed on the horizontal,

whereas the mass points of the plate are free to travel in the vertical axis. Respectively, the velocity perturbations and

perturbation potentials at any control point i on the flexible plate only are given by

uT 0

i ¼
XMw

m¼1

ITs
im sm þ

XMcsþM

m¼1

I
Tg
im gm þ

XMcsþM

m¼1

ITl
im lm, (6)

Fi ¼
XMw

m¼1

I
fs
im sm þ

XMcsþM

m¼1

I
fg
imgm þ

XMcsþM

m¼1

I
fl
imlm, (7)

where IT
im and I

f
im are sets of time-independent influence coefficients that quantify the influence of panel m on panel i; gm

and lm are, respectively, the zero-order and first-order vortex strengths distributed along the central surface and sm are

the zero-order source/sink strengths distributed along the channel walls. To solve for the singularity strengths, a von

Neumann boundary condition is applied so that

Gm

� � �

sm

8><
>:

9>=
>; ¼ ½IN

im�
�1fU1ym þ _Zm þ uNb

m g, (8)

where Gm ¼ gm þ lm. ½I
N
im�
�1 contains, in addition to the normal influence coefficients of the singularities, the boundary

conditions of: (a) vortex strength continuity at panel end points; and (b) zero vorticity at the plate’s trailing edge (thus

enforcing the standard Kutta condition for linear displacements of zero pressure difference at the trailing edge). The

term ym is the panel’s angle to the horizontal; as the model is linearised, this can be found through

ym ¼
ðZnþ1 � ZnÞ

dx
, (9)

where n ¼ m� 1. The term _Zm is the panel’s vertical speed and uNb
m is the normal velocity induced by the vortex blobs

that model the wake; the latter term is derived below. With the application of the Kutta condition, the effect of the

steady vortical wake behind the plate is taken into account. At t ¼ 0, the total vorticity in the system, B, is equal to that
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bound in the plate and hence

Bt¼0 ¼
XMcsþM

i¼1

gt¼0
i dxi. (10)

In Eq. (10), it is noted that the zero-order, vortex singularity strengths from the panel method, gi (first referred to in

Eq. (6)) are in units of vorticity per-unit-length; hence the terms gi are multiplied by their respective panel lengths dxi to

obtain the addition of each panel to the bound vorticity. Owing to the movement of the flexible plate, the bound

vorticity changes with time; the physical effect of this change is to generate an unsteady wake of shed vorticity, its

source is the trailing edge of the flexible surface. To model this wake we release a point vortex of strength gb (a vortex

blob) at each time step. Therefore, at any future time t the total vorticity in the system will be equal to the total bound

vorticity at that time and any shed vorticity in the wake generated up to that point; hence

Bt ¼
XMcsþM

i¼1

gt
idxi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

bound vorticity at t

þ
XNb�1

i¼1

gb
i ;|fflfflfflffl{zfflfflfflffl}

shed vorticity at t�1

(11)

where Nb is the total number of blobs present in the wake. In Eq. (11), the blob strengths, gb
i , are already in units of

vorticity because they are the strengths of point vortices. The strength of the blob to be released at time t, gb
Nb , is chosen

so that the Kelvin condition (that there should be no change in the total vorticity in the system with time) is enforced at

each time step. Therefore, gb
Nb is equal to the difference between Eqs. (10) and (11); hence

gb
Nb ¼

XMcsþM

i¼1

gt¼0
i dxi �

XMcsþM

i¼1

gt
idxi þ

XNb�1

i¼1

gb
i

 !
. (12)

It is assumed in this model that the strengths of the blobs do not diminish with time. The effect of the shed blobs on

the panels (and each other) is calculated using a discrete-vortex method similar to that detailed in Chorin (1973). In our

method the blobs are governed by the two-dimensional Poisson equation such that

r2c ¼ �oðx; tÞ ¼ �
XNb

n¼1

f an
ðrnÞg

b
n, (13)

where c is the stream function, oðx; tÞ is the two-dimensional vorticity field, f an
ðrnÞ is the blob core function and rn is the

vector between a blob and the point p that is anywhere in the infinite space away from the blob. A Gaussian approach is

used for the core function; this utilises a core size, an, for each blob so that the blobs can be coincident without creating

a singular result. The Gaussian core function utilised is

f an
ðrnÞ ¼

1

a2np
e�jri�rnj

2=a2n , (14)

where ri is the distance between a point i on the flexible plate and the point p in space. Utilising Eqs. (13) and (14), the

discretised form for the velocity induced at a point i, ub
i , owing to the nth blob is

ub
i ¼ �

qc
qr
¼ uTb

i iþuNb
i j , (15)

where

uTb
i ¼ �g

b
n

yn

2pjri � rnj
2
ð1� e�jri�rnj

2=a2n Þ, (16)

uNb
i ¼ gb

n

xn

2pjri � rnj
2
ð1� e�jri�rnj

2=a2n Þ, (17)

where xn and yn are the horizontal and vertical components of rn, respectively; i and j denote the cartesian components

of ub
i . A linearised version of the shed vorticity model is deployed in this paper with the blobs assumed only to travel

horizontally. Therefore the tangential component of the blob induced velocity, uTb
i , is zero because yn is zero; this leads

to large computational savings allowing detailed numerical simulations to be executed on a standard desktop computer.

In the present application, the magnitude of core size is assumed the same for each blob and is chosen to be a ¼ 0:4.
Each blob, when created, has its centre placed at a distance of U1dt from the trailing edge of the plate where dt is the

size of the time step; this is also the assumed distance each blob travels between time steps.
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2.3. Fluid–structure coupling

In Lucey et al. (1998) it is shown that when a rotational wake is added to a general flow–structure interaction where

the flow is irrotational, the fluid in the region close to the plate remains predominantly irrotational as the rotational

fluid is mainly downstream of the trailing edge of the plate. It should be noted, however, that the rotational wake does

contribute to the determination of the velocity field adjacent to the moving plate in much the same way that vortex

singularities can be used in models of ideal flow with circulation. Therefore, the pressure along the flexible plate can be

calculated via the discretised form of the linearised unsteady Bernoulli equation; the pressure difference across the plate

can be obtained, assuming that the pressure is equal and opposite in value on the upper and lower surfaces of the plate,

by multiplying this equation by a factor of two so that we have

dpi ¼ �2rf U1uT 0

i � rf

qFi

qt
, (18)

where rf is the free-stream fluid density. There is no evidence in Eq. (18) that the second part of the pressure has been

multiplied by a factor of two; this owes itself to the method employed of calculating Fi, given by Eq. (7), that

automatically accounts for the pressure difference across the plate with no further alteration. Inserting Eqs. (6)–(8) and

(15) into Eq. (18), gives

fdpig ¼ �rf 2U 021½I
T
im�½I

N
im�
�1fymg þ _U

0

1½I
f
im�½I

N
im�
�1fymg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic stiffness

0
B@

þ 2U 01½I
T
im�½I

N
im�
�1f_Zav

m � uNb
m g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hydrodynamic damping I

þ ½I
f
im�½I

N
im�
�1fU 01

_ymg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrodynamic damping II

þ½I
f
im�½I

N
im�
�1f€Zm � _uNb

m g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hydrodynamic inertia

1
CA, (19)

where U 01 ¼ U1 þ A sinot (allowing the incorporation of an unsteady mean flow) and

_Zav
m ¼ 0:5ð_Zn þ _Znþ1Þ. (20)

The coupled wall-flow system is assembled by introducing the pressure of Eq. (19) into the right-hand side of Eq. (5).

Therefore, we have

rh½I�f€Zmg þ d½I�f_Zmg þ B½D4�fZmg ¼ 2rf U 021
1

dx
½Bþ1 �fZmg þ rf

_U
0

1

1

dx
½Bþ2 �fZmg þ rf U 01

1

dx
½Bþ2 �f_Zmg

þ rf U 01½B
�
1 �f_Zmg þ rf ½B2�f€Zmg � 2rf U 01½B1�fu

Nb
m g � rf ½B2�f _u

Nb
m g, (21)

where the ½B� matrices are suitably rearranged forms of the influence matrices presented in Eq. (19) to allow, via the use

of the relations in Eqs. (9) and (20), the expression of the fluid–structure system solely in terms of plate acceleration,

velocity and displacement, and blob induced acceleration and velocity. The hydrodynamic pressures computed using

Eq. (19) are evaluations at the control points of the plate panels, whereas the pressures in Eq. (5) are calculated at the

mass points; this introduces a small numerical error that reduces as the discretisation of the plate is increased. Eq. (21)

can be re-arranged to give the system equation

f€Zmg ¼ ½E�f_Zmg þ ½F�fZmg � ½G�fu
Nb
m g � ½H�f _u

Nb
m g, (22)

where

½E� ¼ ½rh½I� � rf ½B2��
�1 2rf U 01½B

�
1 � þ rf U 01

1

dx
½Bþ2 � � d½I�

� �
, (23)

½F� ¼ ½rh½I� � rf ½B2��
�1 2rf U 021

1

dx
½Bþ1 � þ rf

_U
0

1

1

dx
½Bþ2 � � B½D4�

� �
, (24)

½G� ¼ ½rh½I� � rf ½B2��
�1½2rf U 01½B1��, (25)

½H� ¼ ½rh½I� � rf ½B2��
�1½rf ½B2��. (26)
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2.4. Solution methods

Two distinct, but complementary, approaches are used to solve the system equation. In the first, a time-stepping

numerical integration is performed to yield numerical simulations of the system response to an initial form of imposed

excitation. Such simulations are able to capture transient effects and permit localised dynamics to be investigated

through the analysis of a series of numerical experiments. However, this approach is not so well suited to the prediction

of long-time system response and its global mapping. Thus, for the second approach we assume a single-frequency

system response that might be expected in the infinite-time limit after all transient oscillations of the plate have decayed.

We are then able to use a state-space method that permits the direct extraction of the fluid–structure eigenmodes from

the system equation.

The numerical simulations presented in this paper are produced using a semi-implicit method of solution of Eq. (22);

this applies Gauss–Siedel sweeps over the internal mass points, utilising the following simplified predictor–corrector

relations:

f_Ztþdt
i g � f_Z

t
ig þ dt

f€Zt
i þ €Z

tþdt
i g

2
; fZtþdt

i g � fZ
t
ig þ dt

f_Zt
i þ _Z

tþdt
i g

2
(27,28)

to yield converged values of acceleration, velocity and displacement for every mass point at each time step in the

evolution of the disturbed system.

Global predictions of the infinite-time system behaviour are generated using a standard state-space method,

implemented in a similar way to that detailed by Pitman and Lucey (2009). As applied in this paper, we do not

incorporate the effects of the downstream wake nor of an unsteady free-stream. The matrices in Eq. (22) are re-arranged

as a companion-form matrix from which the eigenvalues and vectors of the coupled system can be extracted directly and

the values of critical velocity can be identified. Thus re-writing Eq. (22), having neglected the wake terms, we have

d2Zm

dt2

� �
� ½E�

dZm

dt

� �
� ½F�fZmg ¼ 0. (29)

The following substitutions are made

w1ðtÞ ¼ ZðtÞ and w2ðtÞ ¼
dZ
dt
¼ _w1ðtÞ. (30a,b)

Inserting relations Eqs. (30a) and (30b) into Eq. (29) yields

f _w2g � ½E�fw2g � ½F�fw1g ¼ 0. (31)

Rearranging Eq. (31) for _w2 we have

f _w2g ¼ ½F�fw1g þ ½E�fw2g. (32)

Eqs. (30) and (32) lead to a system state equation

_w1

_w2

( )
¼

0 I

F E

� �
w1

w2

( )
, (33)

that is more simply expressed as

_w ¼ ½H�w, (34)

where ½H� is the companion matrix. Single-frequency response is then assumed and thus

fwg ¼ fW g expðotÞ, (35)

where o is a complex eigenvalue of ½H� and fWg is the eigenvector corresponding to o that is used to generate the

displacement of the plate. Thus,

o ¼ oR þ ioI and W ¼W RðxÞ þ iW I ðxÞ. (36a,b)

To calculate the plate displacement fZg, only the real part of the first N terms of fwg are required; this is found by

substituting Eqs. (36a) and (36b) into Eq. (35) giving

Z ¼ RðwÞ ¼ expðoRtÞðW RðxÞ cosðoI tÞ �W I ðxÞ sinðoI tÞÞ. (37)
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2.5. Diagnostics

To assist in the interpretation of the results presented in this paper, definitions of diagnostic variables are now made.

The physical significance of these variables is detailed in the results section when they are used to investigate the

fluid–structure phenomena encountered. It is shown in Balint and Lucey (2005) that multiplying Eq. (5) by _Z and then

integrating over the length of the flexible plate yields the following energy-evolution equation for the fluid-loaded plate

d

dt

1

2
rh

Z L

0

_Z2dx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Ek

þ
1

2
B

Z L

0

Z2;xxdx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Es

0
BBB@

1
CCCA ¼

Z L

0

ð�dpÞ_Zdx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
_W

� d

Z L

0

_Z2dx;|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
_D

(38)

where Es and Ek are the strain and kinetic energies of the flexible plate, respectively, and the total energy, Et, is equal to

Es þ Ek; _W and _D are, respectively, the rate of work done by the fluid in the flexible plate and the energy-dissipation

rate by structural damping within the plate. The total work done over a particular time period tp is W ðtpÞ ¼
R tp

0
_W ðtÞ dt.

Both EtðtpÞ and W ðtpÞ are plotted in nondimensional form

ĒtðtpÞ ¼
EtðtpÞ

Esð0Þ
and W̄ ðtpÞ ¼

W ðtpÞ

Esð0Þ
. (39a,b)

Time, free-stream velocity and plate damping are nondimensionalised using the method described in Crighton and

Oswell (1991) for an isolated, infinitely long flexible surface, so that

t̄ ¼ t
r2f B1=2

ðrhÞ5=2
; Ū ¼ U1

ðrhÞ3=2

rf B1=2
and d̄ ¼ d

ðrhÞ3=2

r2f B1=2
. (40a,b,c)

In the present study the flexible surface is not infinitely long, nor is it isolated and thus two further nondimensional

parameters are required; these are the nondimensional length (or mass ratio), L̄, and the nondimensional channel

height, H̄, defined by

L̄ ¼
rf L

rh
and H̄ ¼

H

L
, (41a,b)

where H is the distance from the central surface to either channel wall as shown in Fig. 1. Thus in the absence of

structural damping the three control parameters for the fluid–structure system are Ū , L̄ and H̄. When plotting data we

use the following nondimensional forms

Z̄ ¼
Z
Z0
; x̄ ¼

x

L
; d̄p ¼

dp

rf U2
1

; _̄Z ¼
_Z

U1
; ō ¼ o

ðrhÞ5=2

r2f B1=2
, (42a,b,c,d,e)

where Z0 is the maximum value of Z when the plate is initially deflected to provide excitation to the fluid–structure

system. Here, o is the angular frequency of oscillation of the flexible surface and it is nondimensionalised using the

scheme adopted for time in Eq. (40a); however, a second scheme of nondimensionalisation of o, ¯̄o, is used in the

following discussion, where o is divided by the angular frequency of oscillation of the second in vacuo eigenmode, o2:

¯̄o ¼
o
o2

. (43)

This permits an easier physical grasp of the effect of the fluid loading on the oscillations of the flexible plate.
3. Results

We first present results for the much-studied case of an isolated flexible plate. This requires moving the upper and

lower walls apart until they no longer influence the system dynamics; a value of H̄ ¼ 1 is shown to achieve this, see

Howell et al. (2004). This leaves just two control parameters, Ū and L̄, that determine the system response. Our goal is

to find the critical flow speed, Ūc, beyond which flutter first sets in and identify the mechanism that causes the unstable

behaviour. We then explore variations to critical speed and instability mechanism from this ‘standard case’ that occur

through the introduction of: (a) an unsteady wake, (b) a rigid-inlet surface, (c) channels walls, (d) temporal variation of

the mean flow, and (e) variable plate stiffness. The last two variations are presented with reference to human snoring.
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Although all results are presented within the nondimensional framework of Section 2.5, illustrative physical

properties used in Sections 3.1 and 3.2 are L ¼ 1:355m, r ¼ 2710kg=m3, h ¼ 0:5mm, E ¼ 7� 107 N=m2,

d ¼ 9:08� 10�2 N s=m3; therefore, to give L̄ ¼ 1 a value of rf ¼ 1 kg=m3 is required. Variations to L̄ were effected

by varying rf ; this permits a fixed discretisation, M ¼ 50, of the flexible plate to be used that maintains constant numerical

accuracy. The numerical simulations require an initial excitation to the fluid–structure system. This is provided by releasing

the flexible plate from an imposed deflection at t ¼ 0. The deflection form used is that of the second in vacuo eigenmode of

the cantilevered-free plate. Of course, any other initial form could have been used to the same effect after the passage of

sufficient time. We have chosen this mode because, it will be shown, it bears a close resemblance to the critical mode for low

L̄ and thereby reduces the time taken for the system to arrive at its quasi-steady state.
3.1. Isolated flexible plate: 0:2pL̄p1000, H̄ ¼ 1

We first consider the case of L̄ ¼ 1. Fig. 3(a) shows the system eigenvalues obtained using our state-space method.

We have plotted just the two eigenvalues with the lowest frequencies although all M ¼ 50 eigenmodes of the system are

present in the calculation. Thus, there is no a priori selection of modes that contribute most strongly to the system

solution. The morphology of the state-space is similar to that obtained by Guo and Paı̈doussis (2000) and Eloy et al.

(2007). We note the second mode (marked 2) of the fluid–structure system is the first to become unstable, ōR40 for

Ū4Ūc ¼ 5:452, with a non-zero oscillation frequency, ōI , that indicates flutter. Thus, the magnitude of the restorative

structural force of the plate exceeds that of pressure loading throughout the flow-speed range. In contrast, for the first

mode (marked 1) there is a range of flow speeds for which the flexible plate adopts a mode shape (not presented in this

paper) in which its restorative forces almost exactly balance the pressure loading and non-oscillatory damped behaviour

occurs. For flexible plates held at both ends, this type of force balance leads to the onset of divergence instability. In the

present cantilevered-free configuration its negative ōR throughout the flow-speed range means that Mode 1 would not

feature in the long-term response of the physical system. Fig. 3(b) shows the corresponding system eigenvalues when

some damping, d̄ ¼ 5, is present. Contrasting this with the elastic plate result of Fig. 3(a), it is seen that while second-

mode flutter continues to be the critical instability, its onset flow speed has been significantly increased. The fact than

energy dissipation through damping can be used to control the instability strongly suggests that the flutter mechanism

owes itself to the rate of irreversible energy transfer from flow to structure. This will be confirmed in the investigation

that follows immediately below.

We now focus on the form and cause of the flutter instability seen in Fig. 3 for L̄ ¼ 1. Figures 4(a)–(c) show results

obtained at the critical speed for which Ū ¼ 5:452. The oscillation of the plate is depicted in Fig. 4(a) as a sequence of

snapshots of the flexible plate. An oscillatory, neutrally stable, steady state evolves from the markedly different shape of

the initial excitation. It can be shown, using a Fourier analysis, that this critical mode can be made up of 33% and 63%

of the first two in vacuo eigenmodes based upon strain-energy content, the remainder coming from higher-order modes.

The dominant contribution of the first two in vacuo modes in combination accounts for the necking seen in the envelope

of oscillation. The value of ¯̄o for this critical mode is 0:69; the effect of the fluid is therefore to reduce the plate’s angular

frequency of oscillation from that of the second in vacuo mode by 31%. Figure 4(b) shows that after an initial drop in
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Fig. 3. Fluid–structure behaviour at L̄ ¼ 1, H̄ ¼ 1 (effectively isolated): variation of system eigenmodes with flow speed where (a)

elastic plate, d̄ ¼ 0, and (b) including structural damping with d̄ ¼ 5. The numbers in each figure identify the mode number in order of

ascending frequency at Ū ¼ 0.
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Fig. 4. Fluid–structure behaviour at L̄ ¼ 1, H̄ ¼ 1 (effectively isolated): numerical simulations of system behaviour with d̄ ¼ 0 at the

critical flow speed Ūc ¼ 5:452, (a) time-sequence of instantaneous plate deformation (the thick line is the initially imposed

deformation), (b) time-variation of plate energy, Ēt, (c) time-variation of work done by fluid on plate, W̄ , and, for a post-critical flow

speed Ū ¼ 6:0, (d) time-variation of work done by fluid on plate, W̄ . In both (c) and (d) the lines —— (thin), , and � � �,

respectively, indicate the work done over the first, second, third and fourth quarters of the plate from its leading edge, while ——

(thick) is the sum of these contributions.
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the plate’s total energy, Ēt, associated with its evolution from the applied initial condition to system eigenstate, a steady

state is achieved. This confirms the neutral stability of the plate’s oscillation at this critical speed.

We now consider the energy transfers that underpin this time-series of the plate’s energy. Figures 4(c) and (d),

respectively, show the time-variation of the work done by the fluid-flow on the plate for two cases: exactly at the critical

speed (Ūc ¼ 5:452) and at just above the critical speed (Ū ¼ 6:0). In each case, the total work done on the entire length

of the flexible plate is plotted and the work done in each of the four quarters x̄ : 0! 0:25, x̄ : 0:25! 0:5, x̄ : 0:5! 0:75
and x̄ : 0:75! 1, of the plate that when summed yield the total. This breakdown, into just four quarters, gives a broad

indication of how energy transfer varies along the plate. At the critical speed it is seen that the work done is negative at

early times; the energy transfer is from plate to fluid as the deformation evolves from that of the initial condition.

Thereafter the change to the mean value of total work done is zero; this again confirms the neutral stability of the system at

Ū ¼ Ūc ¼ 5:452. However, we also note that, in the steady state, energy transfer to the middle part of the plate (second and

third quarters) continuously occurs while for the downstream (fourth) quarter there is energy transfer from the plate to the

fluid that exactly counterbalances the former. It is the combination of these local effects that yields the global neutral

stability of the mode. Just above the critical flow speed, Fig. 4(d) shows that the mean value of total work done by the fluid

on the plate increases exponentially. The resulting energy transfer is the cause of the instability. However, we again note

that it is the fluid–structure interaction in the middle half of the flexible plate that accounts for the overall unstable

behaviour. The downstream quarter of the plate is actually doing work on the fluid. The location of destabilising energy

transfer leads us to describe the instability under inspection here (L̄ ¼ 1 and H̄ ¼ 1) as being mid-plate-driven.

The energy transfers described immediately above arise from the term _W in the energy equation, Eq. (38). For energy

transfer to occur, the product of the terms in the integrand must yield a non-zero result when integrated over a period of

oscillation. The time-variations of the terms ð�dpÞ and _Z, in nondimensional form, are plotted in Fig. 5 for three

locations on the flexible plate during the numerical simulation of the critical mode that produced Figs. 4(a)–(c). At early
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Fig. 5. Fluid–structure behaviour at L̄ ¼ 1, H̄ ¼ 1 (effectively isolated): variation of perturbation pressure, �d̄p (denoted �), and plate

velocity, _̄Z (denoted n) with time at (a) x̄ ¼ 0:3, (b) x̄ ¼ 0:5, and x̄ ¼ 0:7 for the numerical simulation that yielded Figs. 4(a)–(c) at the

critical flow speed. The added lines —— and ���, respectively, connect peaks of �d̄p and _̄Z to illustrate the spatial variation of the

phase between these terms.

R.M. Howell et al. / Journal of Fluids and Structures 25 (2009) 544–566 555
times modal evolution is again seen. For times in the ensuing steady state, the broken lines that we have sketched in

connect corresponding peaks in each of the pressure and plate velocity signals for the three locations. These lines serve

to illustrate the spatial variation of the phase relationship between these terms. If the pressure and velocity signals were

exactly orthogonal, then there will be no work done over one cycle of oscillation; it is the phase variations to this

situation that create the irreversible energy transfers captured in Fig. 4(c) and which underpin the flutter instability

represented by Fig. 4(d). The foregoing phase-shifts, away from the orthogonality that would be expected for an

infinitely long flexible surface in potential flow, are caused by plate finiteness that combines two effects: those of the

leading-edge singularity and the trailing-edge Kutta condition. The relationship between the pressure and velocity at a

point on the plate is then uniquely defined by its spatial relationship to the source of these two effects. For one-sided

fluid flow over a finite flexible surface, this feature is explained in Lucey and Carpenter (1993a). It will be seen in Section

3.2 that distancing the leading-edge singularity from the flexible plate through the introduction of an upstream rigid

surface causes a significant modification to the plate’s response and thus destabilisation occurs through an instability

mechanism characteristic of a long plate. The mechanism at work for Fig. 4 is essentially the same as that found by

Balint and Lucey (2005) for the case of viscous flow destabilising a cantilevered flexible plate through flutter. Finally we

remark that the inclusion of material damping leads to a non-zero value of the term _Din Eq. (38). This subtracts from

the rate of energy transfer from fluid flow to the flexible plate and therefore increases the value of the critical speed, as

seen in Fig. 3(b).

Results that demonstrate the effect of the mass ratio, L̄, are now presented. Figure 6 shows the variation of system

eigenmodes with flow speed for the present case over four decades of L̄ (noting that Fig. 6(a) is a reproduction of Fig.

3(a)). Far lower dimensional and nondimensional critical speeds and oscillation frequencies ensue as L̄ is increased; this

can be seen in the axis labelling in the progression from Figs. 6(a)–(d). In dimensional terms, large L̄ can represent either

a significantly increased fluid loading (for a fixed plate length) or an increased plate length (for a fixed fluid density).

Each of these increases the ratio of fluid pressure forces to the opposing restorative forces in the flexible plate (as

compared with the dynamics of a short plate near its critical speed). Accordingly, the type of instability that yields the

critical speed changes from the single-mode flutter in Fig. 6(a) to a modal-coalescence flutter associated with heavy fluid

loading. Thus, in Fig. 6(b) it is clearly the coalescence of the second and third modes that leads to the oR-branch of the

second mode turning to enter the positive quadrant. Correspondingly, the oR-branch of the third mode dips

downwards to give an increasingly damped solution. For elastic plates held at both ends, exact coalescence of the
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Fig. 6. Fluid–structure behaviour for various L̄ at H̄ ¼ 1 (effectively isolated): variation of system eigenmodes with flow speed for

d̄ ¼ 0 for (a) L̄ ¼ 1 (as in Fig. 3(a)), (b) L̄ ¼ 10, (c) L̄ ¼ 100, and (d) L̄ ¼ 1000. The numbers in each figure identify the mode number in

order of ascending frequency at Ū ¼ 0.
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interacting modes occurs to give a complex-conjugate pair of solutions; for example, see Weaver and Unny (1970) and

Lucey and Carpenter (1993b). Pitman and Lucey (2009) showed that the introduction of structural damping prevents

exact coalescence in the panel-flutter problem but the system continues to yield what remains essentially a single-

frequency response comprising a highly amplifying and a highly attenuated pair of roots. Of course, only the amplifying

root would have significance in a physical system. Exact coalescence can occur only in a wholly conservative system.

The present system has been shown to support nonconservative energy transfers and these act in much the same way as

does the introduction of damping in the panel-flutter problem. Nevertheless the instability mechanism remains

fundamentally of the modal-coalescence type. With a further increase to L̄ ¼ 100 in Fig. 6(c), it is again the coalescence

of second and third modes that results in instability. At L̄ ¼ 1000 in Fig. 6(d), the coalescence is seen to be more

complex involving all of the second, third and fourth modes. The progression to higher-order in vacuo eigenmodes

participating in the composition of the critical mode as L̄ is increased is clearly demonstrated in the numerical and

experimental results of Yamaguchi et al. (2000a, b) and Watanabe et al. (2002a, b).

Fig. 7 shows the results of a numerical simulation for L̄ ¼ 1000 exactly at the critical speed (Ūc ¼ 1:542� 10�3)

found in Fig. 6(d). The plate’s motion can be compared with the corresponding results of the standard case in Fig. 4.

The presence of the higher-order modes predicted by the state-space calculation is confirmed. This type of
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Fig. 7. Fluid–structure behaviour at L̄ ¼ 1000, H̄ ¼ 1 (effectively isolated): numerical simulations of system behaviour with d̄ ¼ 0 at

the critical flow speed Ū ¼ Uc ¼ 1:542� 10�3, (a) time-sequence of instantaneous plate deformation (the thick line is the initially

imposed deformation), and (b) time-variation of work done by fluid on plate, W̄ , in which —— (thin), , and � � �, respectively,

indicate the work done over the first, second, third and fourth quarters of the plate from its leading edge while —— (thick) is the sum of

these contributions.
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modal-coalescence flutter was illustrated as a travelling-wave form of flutter in Tang and Paı̈doussis (2007). The pressure
loading is now more like that of potential flow over an infinitely long flexible plate. The magnitude of the pressure due to

plate curvature plays the essential role in destabilisation by bringing the two modes to coalescence and thereby create the

phase shift between pressure and plate motion that drives energy into the plate. Thus, instability of the plate now occurs

when the flow speed is high enough to produce pressure forces of a sufficient magnitude to modify strongly the modal

behaviour. As a travelling-wave instability, it should be most pronounced over the downstream regions of the plate because

these locations are furthest from the leading-edge restraint that inhibits wave travel. The variation with time of work done

by the fluid pressure is shown in Fig. 7(b). The result for the entire flexible plate confirms the state of neutral stability; there

is no net transfer of energy between fluid and structure. However, it is also evident that there is energy transmission from

fluid to structure over the downstream half and, to a much lesser extent, the first quarter of the flexible plate while the

reverse occurs in the second quarter. Thus, the instability that sets in when Ūc is exceeded can be described as (largely)

downstream-driven, in contrast to the instability characteristics of a short plate (L̄ ¼ 1) described earlier.

A series of numerical experiments to determine the critical flow speeds and associated critical modes within the range of

mass ratios 0:2pL̄p1000 has been conducted to compare our results with those of other published work. Watanabe et al.

(2002b) collected Ūc data from several theoretical and experimental studies to compare against their own findings. These

data have been re-plotted along with our results and are displayed in Fig. 8. The purpose of presenting this figure is

twofold. It gives credence to the validity of our model and it summarises the overall trend of Ūc-dependence upon L̄ for the

fluid–structure system. Accordingly, we show only general trends and have not included all of the experimental and

theoretical data published. For a complete collection of results published to date, the excellent summary figure in Tang and

Paı̈doussis (2007) is recommended. Our values of Ūc in Fig. 8 show good correlation with the other theoretical models.

When comparing theory and experiment, it is noted that all models capture the overall trend of the experimental data. As L̄

increases the fluid–structure system becomes unstable at successively lower values of nondimensional flow speed. All

models correctly predict that instabilities above Ūc are of the flutter type as observed in experiments; we additionally note

the point of transition from single-mode flutter to the modal-coalescence type at the bottom of the figure. However, all

models fail to capture hysteresis effects found in experiments where several values of Ūc can be obtained for a single value

of L̄. This is most probably due to the existence of a sub-critical instability in the system that cannot be captured by linear

models. The large disparity between experimental measurements of Ūc and those theoretically predicted may be due to the

omission of three-dimensional effects. The analysis of Eloy et al. (2007) modelled transverse plane waves on a plate of finite

aspect ratio showing that two-dimensional analyses, at infinite aspect ratio, grossly overestimate the pressure loading and

thus give unrealistically low critical flow speeds for instability onset. When the finite aspect ratio is taken into account, their

Fig. 6 shows that theory and experiment are well-aligned for aspect ratios less than unity. For higher aspect ratios,

agreement was less good but, as Eloy et al. noted, this may be due to the existence of three-dimensional deflections of the

plate in a physical system. For the related problem of a three-dimensional flexible plate held along each of its edges in one-

sided flow, these effects were also reported by Lucey and Carpenter (1993b). Additionally, nearly all of the theoretical

models do not model viscous effects explicitly. For large-amplitude motions, time-varying separation (upstream of the

trailing edge) of the boundary-layer may occur that could create a further type of flutter mechanism.
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Fig. 8. Fluid–structure behaviour for a range of L̄ at H̄ ¼ 1 (effectively isolated): plot of Uc at different L̄ (adapted from Watanabe et

al. (2002b)). Data are from several published studies. Experimental data: From Watanabe et al. (2002b): � flag type paper, � long-type

paper, n elastic sheet;B Huang (1995); þKornecki et al. (1976); theoretical models:&Kornecki et al. (1976); � (thin) Huang (1995);

� (thick) Guo and Paı̈doussis (2000); �� Watanabe et al. (2002b) with their parameter CD ¼ 0; �� present theory. The first set of

boundaries at the bottom of the graph show the predominant in vacuo eigenmode in the form of the critical mode calculated by the

theoretical model of Watanabe et al. (2002b); the second set of boundaries are from our numerical simulations, also showing the

predominant eigenmode when the flutter instability predicted is of the single-mode type, but also showing which group of modes form

the critical mode when the flutter instability is of the modal-coalescence type.
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Finally, we note from Fig. 8 that our predictions of the dominant eigenmodes in the form of the critical mode and

those of Watanabe et al. (2002b) differ significantly at higher values of L̄. This is because Watanabe et al. (2002b) pre-

supposed that the motion of the plate could be made up of the amalgamation of the first four in vacuo eigenmodes. In

our model there is no such pre-supposition. As L̄ increases the critical mode becomes more complex and its

correspondence to a single in vacuo plate mode becomes increasingly untenable. Our computations capture the

fluid–structure eigenmodes directly; at high L̄ these may be very different to those that can be constructed from a

limited set of in vacuo plate modes. Additionally, Figs. 6(a)–(d) show that as L̄ increases, clear changes (or ‘modal

switching’) of the critical mode do not occur. While the single-mode flutter of short plates may be dominated by

recognisable in vacuo eigenmodes (principally the second), the modal-coalescence flutter instability of long plates has

been shown to comprise at least two fluid-loaded eigenmodes of flexible plate. For long plates the change of critical

mode shape evolves in a continuous manner with L̄.

3.2. Variation of unsteady model parameters at L̄ ¼ 1

The fluid–structure dynamics of an effectively isolated (H̄ ¼ 1) flexible plate have been elucidated in Section 3.1. We

now investigate the effects of including additional features in the fluid–structure model for the case of L̄ ¼ 1. Thus, we

incorporate: (a) an unsteady wake, (b) channels walls, and (c) a rigid-inlet surface upstream of the flexible plate.

Discussion of the results in this section focuses on how these additional features modify the critical speed and dynamics

of the ‘standard’ L̄ ¼ 1, H̄ ¼ 1 case.

The effect of including an unsteady wake is illustrated by the results of Fig. 9. The validation of the linearised,

discrete-vortex method and its coupling with a fixed-geometry BEM is presented in Howell (2006). The effect of the
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shed vorticity increases the critical speed, Ūc (for the standard case L̄ ¼ 1, H̄ ¼ 1) from 5:452 to 5:948, an increase of

approximately 9%. The shed vorticity increases the magnitude of the fluid pressure near the trailing edge due to the

terms _uNb and uNb in Eq. (19). The wider neck of the mode shape seen in Fig. 9(a), as compared with that of Fig. 4(a),

indicates an increased component of lower-order modes; this is borne out by an oscillation frequency, ¯̄o, of 0:61 as

compared with 0:69 for the standard case. These changes are consistent with the increased pressure loading near the

trailing edge of the plate when the wake effects are included.

At first sight, an increased magnitude of the fluid pressure near the trailing edge might seem incompatible with

stabilisation as evidenced by the increase in critical speed. However, we recall that the single-mode flutter of this short

plate arises not from the magnitude of the pressure force but from its phase relationship with the plate’s motion.

Because the wake is a periodic continuation of the bound vorticity, it exercises an effect that is similar to that of

increased plate length on the phase relation between the pressure acting on the plate and its velocity. Thus, the pressure

and velocity signals are closer to being orthogonal when the wake is included and this reduces the potency of the phase-

shift mechanism of the single-mode flutter of short plates. However, its inclusion does not eliminate single-mode flutter

(nor replace it with modal-coalescence flutter as would increasing plate length). The modification of the phase between

pressure and plate velocity, effected by the wake, reduces the rate of energy transfer between fluid flow and structure

and this leads to an increase in the critical speed for short plates. This is demonstrated by Fig. 9(b) in which we have

plotted the energy transfers for each of the four quarters of the plate with and without the wake included. The flow is at

the critical speed Ū ¼ 5:452 that is obtained without a wake and thus the mean value of the total W̄ for the wake results

is marginally decreasing thereby indicating an attenuating response at this flow speed. As would be expected the greatest

reductions in the energy-transfer mechanism are seen to occur in the third and fourth quarters of the flexible plate that

are most strongly influenced by the wake vorticity. Table 1 lists the values of the critical speed with, Ū
	

c , and without,
Fig. 9. The effect of an unsteady wake on the system response: numerical simulations of system behaviour at L̄ ¼ 1, H̄ ¼ 1 (effectively

isolated) and d̄ ¼ 0, (a) time-sequence of instantaneous plate deformation at the new critical flow speed Ūc ¼ 5:948 (the thick line is the

initially imposed deformation and note that early deformations have been removed to provide a clearer view of the critical mode), and

(b) time-variation of work done by fluid on plate, W̄ , with (discrete data) and without (continuous data) a wake at Ūc ¼ 5:452 (the

critical speed found without a wake) where the data sequences n, þ, }, � and —— (thin), , , � � � each, respectively, indicate the

work done over the first, second, third and fourth quarters of the plate from its leading edge, while & and —— (thick) are the

respective sums of these contributions.

Table 1

Effect of an unsteady wake on the critical velocity: variation of the critical velocity, Ūc, with L̄; Ū
	

c is the critical velocity when the

unsteady wake effect is included.

L̄ Ūc Ū
	

c ðŪ
	

c � ŪcÞ=Ūc

0.2 40.2000 54.3800 0.35

0.6 9.6400 11.4700 0.19

1.0 5.4520 5.9480 0.09

1.2 4.5846 4.7269 0.03

1.4 4.0123 3.9533 �0.01

1.6 3.6312 3.4385 �0.05
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Ūc, the wake effects, along with the proportional difference ðŪ
	

c � ŪcÞ=Ūc, for a range of L̄. These data corroborate the

discussion above by demonstrating that wake effects are stabilising for short plates. Longer plates are less affected by

the wake but experience a destabilising effect because they succumb to modal-coalescence flutter that results from the

pressure and plate velocity signals being more closely orthogonal.

The effect of a rigid central surface, equal in length to the flexible surface, placed upstream of the flexible surface and

in the effective absence of channel walls (H̄ ¼ 1) is now investigated. Figure 10 maps the variation of system

eigenmodes with flow speed for the present case and can be contrasted with Fig. 3(a); similarly, Figs. 11(a) and (b) show

the critical mode and energy transfer from fluid to structure, respectively, and can be compared with the corresponding

results of the standard case in Figs. 4(a) and (c). We note that the third mode (marked 3) of the fluid–structure system is

the first to become unstable, ōR40 for Ū4Ūc ¼ 13:547. The critical speed is substantially higher than Ūc ¼ 5:452
found in the absence of a rigid central surface. The inclusion of the rigid central surface stabilises the second-mode

flutter that was previously critical. That single-mode flutter was shown to be caused by the phase relationship between

fluid pressure and plate velocity that can be attributed in part to the effect of high flow curvature caused by the leading-
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Fig. 10. The effect of an upstream, rigid central-surface on the system response: variation of system eigenmodes with flow speed for

L̄ ¼ 1, H̄ ¼ 1 (effectively isolated) and d̄ ¼ 0 when an upstream, rigid central-surface (equal in length to the flexible plate) is

introduced. The numbers on each figure identify the mode number in order of ascending frequency at Ū ¼ 0.

Fig. 11. The effect of an upstream, rigid central-surface on the system response: numerical simulation of system behaviour for L̄ ¼ 1,

H̄ ¼ 1 (effectively isolated) and d̄ ¼ 0 at the new critical flow speed Ūc ¼ 13:547, (a) time-sequence of instantaneous plate deformation

(the thick line is the initially imposed deformation), and (b) time-variation of work done by fluid on plate, W̄ , in which —— (thin), ,

and � � �, respectively, indicate the work done over the first, second, third and fourth quarters of the plate from its leading edge

while —— (thick) is the sum of these contributions.
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edge singularity. The introduction of a rigid central-surface moves the singularity much further upstream of the flexible

plate and that destabilisation mechanism is diminished. The principal instability mechanism is now seen in Fig. 10 to be

a modal-coalescence of Modes 2 and 3 and this is clearly reflected in the mode shape of Fig. 11(a). Thus, the flexible

plate behaves in a way that is closer to that of a plate with high L̄ — see Figs. 6 and 7. This then suggests that the effect

of an upstream rigid plate of fixed length decreases as L̄ is increased, a result that was shown by Tang and Paı̈doussis
(2007). What is perhaps surprising in the present results is that the greatest destabilising energy transfer continues to

occur in the middle half of the plate as shown in Fig. 11(b), even though the instability is now essentially a modal-

coalescence flutter.

The effect of channel walls is now investigated. These are placed at a distance of one-tenth of the plate length from

the plate and thus H̄ ¼ 0:1. Plots of the critical mode and the energy-transfer from fluid to wall are presented in Fig. 12.

The proximity of the walls when L̄ ¼ 1 reduces Ūc by 5% relative to the isolated case. This configuration in which

channel-wall proximity affects the behaviour and stability of the flexible plate has been studied by Aurégan and

Depollier (1995) and Guo and Paı̈doussis (2000). The lowering of Ūc, relative to the isolated case, is caused by an

increase in the pressure difference across the plate that occurs through mass-conservation and Bernoulli effects in a

channel of finite width. This supplements the pressure difference caused by plate curvature and motion, the only sources

of pressure difference when channel walls are absent. However, the channel walls do not significantly modify the

location of the greatest amount of fluid work done on the plate; see Fig. 12(b). Like the standard case of Section 3.1,

energy transfer from fluid to structure occurs in the second and third quarters of the plate while the reverse occurs in the

downstream quarter. Accordingly we can continue to describe the destabilisation as being mid-plate-driven. The effect of

the channel walls is also seen in the form of the critical mode plotted in Fig. 12(a) that has both a wider neck and higher

amplitude (relative to the same form of initial excitation) as compared to its counterpart in Fig. 4(a).
3.3. Potential snores

The computational model is now used to study a particular application of the foregoing fluid–structure interactions.

In doing so, however, we are able to illustrate the general effects of time-varying mean flow and inhomogeneity in the

properties of the flexible plate. The geometry shown in Fig. 1 is assumed to be an approximation of the human pharynx:

the channel walls represent the throat, a rigid-inlet the hard palate and the flexible plate is the soft palate. We are

therefore able to model the basic features of human snoring where such snores are directly related to flutter of the soft

palate. Similar approaches to modelling human snoring have been made by Gavriely and Jensen (1993), Aurégan and

Depollier (1995), Huang (1995), Balint and Lucey (2005) and Tetlow and Lucey (2009). Appropriate nondimensional

parameters based on human dimensions are L̄ ¼ 0:42 and H̄ ¼ 0:1. It is assumed a snore is initiated when the oscillation

of the plate becomes unstable, i.e. above Ūc.

We first study the effect of using a time-varying mean flow Ūðt̄Þ that approximately models inhalation during sleep.

The inhalation lasts for 1 s (or 4.28 units of nondimensional time), during which time Ū increases linearly from zero to a
Fig. 12. The effect of channel walls on the system response: numerical simulation of system behaviour for L̄ ¼ 1, H̄ ¼ 0:1 and d̄ ¼ 0 at

the new critical flow speed Ūc ¼ 5:177, (a) time-sequence of instantaneous plate deformation (the thick line is the initially imposed

deformation), and (b) time-variation of work done by fluid on plate, W̄ , in which —— (thin), , and � � �, respectively, indicate

the work done over the first, second, third and fourth quarters of the plate from its leading edge while —— (thick) is the sum of these

contributions.
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Fig. 13. The effect of time-varying uniform flow on the system response: numerical simulation of system behaviour for L̄ ¼ 0:42,
H̄ ¼ 0:1 (these dimensions mimicking that of the human upper airway) and d̄ ¼ 0 with an upstream rigid central surface (equal in

length to the flexible plate) present, (a) time-sequence of instantaneous plate deformation (the thick line is the initially imposed

deformation while and denote deformations at t̄ ¼ 4:24 and 4:28, respectively, and deformations prior to this time period have

been removed to provide a clearer view of the critical mode that develops), and (b) time-variation of work done by fluid on plate, W̄ , in

which —— (thin), , and � � �, respectively, indicate the work done over the first, second, third and fourth quarters of the plate

from its leading edge while —— (thick) is the sum of these contributions. Ūðt̄Þ increases from 0 to 41:8 over the period t̄ : 0! 4:28.

Fig. 14. The effect of time-varying uniform flow on the system response: variation of perturbation pressure, �d̄p (dashed line), and

plate velocity, _̄Z (continuous line) with time at (a) x̄ ¼ 0:3, (b) x̄ ¼ 0:5, and x̄ ¼ 0:7 for the numerical simulation that yielded Fig. 13.

R.M. Howell et al. / Journal of Fluids and Structures 25 (2009) 544–566562
chosen maximum velocity. Therefore, a critical velocity gradient exists; this is the maximum velocity gradient for which

the flexible surface is still stable at the end of the ‘inhalation’. The development of the critical mode is illustrated in

Fig. 13(a) that shows a series of instantaneous deflections of the flexible plate between the times t̄ ¼ 4:24 and 4.28. The

run commenced at t̄ ¼ 0 with the plate’s second in vacuo mode applied as an initial deflection; this is also plotted in

Fig. 13(a). The applied initial deflection decays but from it emerges a higher-order system mode of the type promoted by

increased fluid loading in Section 3.1 and the inclusion of an upstream rigid surface in Section 3.2. This is evident first in

the appearance of the envelope of deflections seen in Fig. 13(a) that is formed at times for which Ūðt̄Þ is close to those
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which yield neutral stability. However, because the flow speed continues to increase to its maximum applied value at

Ūð4:28Þ, strong amplification is then seen in the series of final instantaneous deflections. The emergence of a higher-

order mode as that which destabilises the system suggests a modal-coalescence flutter mechanism that we have shown

earlier to be promoted by increasing fluid loading or plate length for a steady applied flow. In the present case the

increased fluid loading arises from a much higher final flow speed, Ū ¼ 41:8, at t̄ ¼ 4:28 (3:7m=s after 1 s), than would

have been required to destabilise the second mode had a steady flow speed of Ū ¼ 26:5 (2:34m=s) been applied.

Figure 13(b) shows the associated time-variation of fluid work done W̄ over the period that culminates in the end of

inhalation for the critical velocity gradient. It is clear that the instability is driven by the fluid work done on the third,

second and first quarters of the plate in order of the magnitude of contribution to the plate’s destabilisation. Figure 14

shows the time-variation of flexible-surface velocity and fluid pressure over the same time period as plotted in Fig. 13.

At the location x̄ ¼ 0:7 in Fig. 14(c) that resides within the third quarter where the greatest destabilising work occurs, it

is seen that ð�d̄pÞ and _̄Z are almost in-phase. This provides further evidence for characterising the instability as being of

the modal-coalescence type since exact phase alignment indicates a pure resonance of fluid loading and plate motion.

Finally, we recognise that the critical velocity gradient found is specific to the initial excitation applied. As evident from

Fig. 13(a), we applied the second in vacuo mode that might have been expected to promote flutter of the second system

mode. What we therefore emphasise is that the single-mode flutter mechanism that has been seen to be the critical

instability for short plates in steady uniform flow may not establish itself in a time-varying mean flow. Thus, the critical

instability is likely to be the more robust modal-coalescence instability that typically occurs at higher mean-flow

dynamic pressures.

We now briefly investigate the effect of spatially varying plate stiffness for the case of uniform mean flow. The critical

speed for a homogeneous flexible plate in a system with L̄ ¼ 0:42 and H̄ ¼ 0:1 is first found. The evaluation of W̄ , see

Fig. 15(a), indicates that the instability causing this snore is driven solely by energy transfer on the third quarter of the
Fig. 15. The effect of spatially varying plate stiffness on the system response: numerical simulation of system behaviour for L̄ ¼ 0:42,
H̄ ¼ 0:1 (these dimensions mimicking that of the human upper airway) and d̄ ¼ 0 with an upstream rigid central surface (equal in

length to the flexible plate) present, (a) homogeneous flexible plate at its critical flow speed Ūc ¼ 26:5: time-variation of work done by

fluid on plate, W̄ , in which —— (thin), , and � � �, respectively, indicate the work done over the first, second, third and fourth

quarters of the plate from its leading edge while —— (thick) is the sum of these contributions, and variation of plate energy with time

at Ū ¼ 26:5 for (b) homogeneous flexible plate, (c) flexible plate with a 10% increase in plate stiffness over its third quarter, and (d)

flexible plate with a 10% increase in plate stiffness over its first quarter.
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plate, the characteristic similar to that seen in Fig. 12(b) (L̄ ¼ 1, H̄ ¼ 0:1) but with no assistance from the second

quarter of the plate. The plate energy, Ēt, for this case is shown in Fig. 15(b) and is seen to maintain a constant mean

value appropriate to the neutrally stable state of the plate. We then mimic a proposed ‘cure’ for the snore by applying a

10% greater stiffness in the third quarter of the flexible surface where the instability mechanism occurs. This soft-palate

stiffening is a strategy similar to that described by Ellis et al. (1993). The resulting trace of plate energy is shown in

Fig. 15(c) and the strategy is indeed found to have a stabilising effect. If the same simulated stiffening is applied to the

first quarter of the flexible plate instead of the third quarter, the result of Fig. 15(d) shows that the change is actually

destabilising. These results demonstrate that flexible-plate stiffening can be used to control stability for the alleviation of

palatal snoring but that the location of such stiffening is critical in order to achieve the desired effects.
4. Conclusions

We have developed and deployed a new computational model for the fluid–structure interaction between a

cantilevered-free flexible plate and an ideal flow. The model permits numerical simulations to be conducted that capture

transient behaviour and in which spatially localised fluid–structure interactions can be identified. The computational

model can also be used to determine the global stability of the system for the infinite-time limit. Using these solution

methods in combination we have elucidated instability mechanisms showing how spatially varying fluid–structure

interactions along the plate combine to give the system response.

The investigations presented in this paper provide an accurate linear-stability map for the standard case of

cantilevered-free flexible plate in an unbounded uniform flow. We have then investigated the changes to this ‘standard’

fluid–structure interaction that are caused by the effects of: (a) shed vorticity, (b) channel walls, (c) a rigid-inlet surface,

(d) temporally varying inlet flow-velocity, and (e) variable plate stiffness. A summary of the effects of (a)–(c) is given in

Table 2. Overall, we can conclude that short flexible plates are destabilised by single-mode flutter caused by an

irreversible energy transfer from fluid to structure that principally occurs over the middle part of the flexible plate. In

contrast, long flexible plates succumb to a modal-coalescence flutter that is principally driven by the magnitude of the

fluid loading as opposed to the subtle phase relationships that underpin single-mode flutter. Thus, the modal-

coalescence flutter has its parallel in the Kelvin–Helmholtz instability of flexible plates held at both ends at flow speeds

higher than those that give divergence instability. The proximity of channel walls tends to intensify the single-mode

flutter mechanism whereas the inclusion of a rigid-inlet surface diminishes the mechanism so that a higher critical flow

speed associated with modal-coalescence is reached before instability sets in. The effect of a wake is to decrease the

potency of the single-mode flutter mechanism that dominates the destabilisation of short plates with light fluid loading

and thereby increase critical speeds. However, wake effects promote the modal-coalescence flutter that is the critical

instability for long plates or those with heavy fluid loading and are therefore destabilising; the magnitude of this effect

reduces with increases to plate length.

By elucidating the instability mechanisms to which the fluid–structure system is prone, we have identified two distinct

types of plate flutter. While the energy flow between fluid and structure for both is caused by phase-shifts between the

pressure load and the motion of the plate, the mechanics behind the phase shifts are very different. This has implications

for the engineering control (or exploitation) of the instabilities. Structural forces are dominant in the single-mode flutter
Table 2

Summary of flutter instability dependence upon system configuration.

Simulation description L̄ H̄ % change in Uc

from ‘standard’

case

¯̄o Region of plate where

most destabilising

energy transfer occurs

(Incipient)

Flutter type

Standard 1 1ð¼ 1Þ � 0.69 Middle half Single-mode

Long plate/heavy fluid loading 1000 1ð¼ 1Þ �99:97% 0.19 Mainly downstream

half

Modal-

coalescence

Wake included 1 1ð¼ 1Þ 9:10% 0.61 Middle half Single-mode

Rigid, upstream central-surface 1 1ð¼ 1Þ 148:48% 1.64 Middle half Modal-

coalescence

Channel flow 1 0.1 �5:04% 0.63 Middle half Single-mode
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of short plates and it is the phase-relationship (to plate motion), as opposed to the magnitude, of the fluid pressure that

is critical. Thus, this instability, as we have shown, can be controlled by the judicious stiffening of parts of the plate or

the inclusion of damping, for example, by doping the plate material. In contrast, the appearance of the destabilising

phase shift in modal-coalescence flutter is principally dependent upon the magnitude of the pressure load that brings the

coalescing modes together. Thus, damping has only a mildly modifying effect on the critical speed. Localised stiffening

strategies, as a means to design out the instability, would also be difficult to implement. The added stiffness would need

to be applied in such a way that it separated out the principal modes in the frequency space in order to postpone their

coalescence with increasing flow speed.

The effects of time-varying mean flow and of spatially varying flexible-plate properties have been illustrated in the

context of upper-airway dynamics and the mechanisms that might lie behind palatal snoring. We have shown that

stiffening does have the potential to increase the critical speed of palatal flutter provided that it is applied in the correct

location. This highlights the difficulty of applying successful treatment to a patient suffering from palatal snoring. This

difficulty is compounded by the potential existence of two different types of instability that we have highlighted in this

paper. Increasing complexity occurs when a more faithful representation of the upper airway is modelled. Aurégan and

Depollier (1995) introduced two broad classifications namely, pure and apnœic snores, owing to the flexibility of the soft

palate and channel properties, respectively. Moreover, the site of snore generation is not necessarily confined to the

region of the soft palate but to various sites in the human pharynx, as shown by Miyazaki et al. (1998). It therefore

follows that there will be different treatments for each type of snore and that treatment must be tailored to the

individual patient. Fundamental understanding of the fluid–structure interactions at work undoubtedly will underpin

the appropriate developments of such treatments.
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